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The Coupling Coeflicients of an Unsymmetrical
High-Q Lossy Waveguide Resonator”

HENRY J. RIBLETT, MEMBER, IRE

Summary—This paper determines the minimum insertion loss
and the minimum VSWR of a waveguide resonator constructed by
spacing two, unequal, reactive, primarily-shunt, lossy, reflecting ele-
ments approximately one-half-wavelength apart on a lossy trans-
mission line. The requirement that the resonant loss be small, 10
db or less, limits the size of the loss parameters and permits an ap-
proximate solution of the problem within an error of the order of
1/Qz. These formulas can be expressed in terms of two “coupling
coefficients.” Contrary to the familiar formulas derived from the low
frequency analogue, however, these coupling coefficients depend, in
general, on the parameters of both reflecting elements. Formulas for
the loaded and unloaded Q of the resonator are derived. In general,
it is not possible to determine the unloaded Q of the resonator from
its loaded Q except by a limiting process. Within the order of the ap-
proximation involved, series losses cannot be distinguished from
shunt logses. Accordingly they can be lumped together and one is led
to the fact that a lossy admittance inverter consists of a lossless ad-
mittance inverter surrounded on both sides by series losses. This is
used to justify the application of the idea of “predistortion” to the
design of narrow-band, lossy, waveguide filters.

INTRODUCTION
T HE RESPONSE characteristics of a lossless res-

onator with external coupling have been dis-

cussed in terms of Maxwell's equations and the
eigenvalue solutions of the pertinent boundary value
problem.! When loss is introduced into the problem,
however, a rigorous solution is no longer available.?

In the customary approximation,® the resonator is
treated in terms of its behavior at a single natural fre-
quency where its response is that of a tuned LC circuit.
To provide coupling into the resonator, the LC circuit
is terminated in ideal transformers. All the loss of the
resonator is associated with the tuned LC circuit while
the ideal transformers, which correspond to the cou-
pling elements of the resonator, are taken to be lossless.
The final low-frequency model is pictured in Fig. 1.

For the resulting lumped-constant network, the in-
sertion loss at resonance, Py, is given by

4P = (1 4 B1 + B2)?/B18s, N

while the VSWR p;, measured at terminal 1, at res-
onance is given by

p1 = (1 + B5)/B1. (2)
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Here it should be noted that resonance occurs at the
single frequency which minimizes both P, and p;. The
B's are the well known coupling coefficients® and are
given terms of the turns ratios of the ideal transformers,
R¢ and the loss of the LC circuit. For the network of
Fig. 1, they are independent of each other.

The effect of coupling losses on the response of the
low frequency analogue have been considered by Malter
and Brewer* and by Ginzton.’ Young® has considered the
resonator problem in which the LC network is replaced
by a lossy section of transmission line essentially as
shown in Fig. 2 except that his formulas assume no
losses in the coupling elements. He has shown that for
a lossy, transmission-line resonator, the frequencies of
minimum loss and minimum VSWR do not coincide.

In this paper, the resonator to be studied is that of
Fig. 2, consisting of two lossy elements, most of whose
reflection is due to the shunt discontinuity, spaced ap-
proximately an integral number of half-wavelengths
apart on a uniform but lossy transmission line. The
minimum insertion loss and VSWR of this resonator
will be determined in terms of coupling coefficients, sub-
ject to certain limitations on the size of the loss
parameters.

That some restriction is necessary, we can see as
follows: Clearly a symmetric resonator (8;=82) whose
minimum P, and p are given by (1) and (2) is quasi-
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Fig. 1—Lumped constant resonator.
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Fig. 2—Lossy transmission line resonator model.
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reactive in the sense that the insertion loss of the res-
onator can be determined from its VSWR by eliminat-
ing B1 =8, between (1) and (2). Now this same relation
is true for the lumped-constant model regardless of
loss; but, if the transmission line between two identical
reflecting elements, as in Fig. 2, is sufficiently long or
lossy, there will be no direct relationship between the
input standing wave ratio and the insertion loss. Thus
we know that for the general network of Fig. 2 no exact
formulas for input VSWR and insertion loss in terms
of coupling coefficients is possible.

Tae CourLING COEFFICIENTS

The final formulas for the coupling coefficients 81, B2
involve by, bs, 71, 72, g1, g2, and sh(al) but do not contain
x; and x» since their only effect is to slightly modify the
line length at resonance. Here all symbols are defined
in Fig. 2 and sh(ad) is sinh (af). These formulas were
obtained by the involved computations outlined in the
Appendix. However they can be obtained directly,
though heuristically, in the following manner.

We consider short lengths of transmission line placed
on either side of the general reflecting element whose
transfer?” matrix is given by the product

(i 0G0 ) o

If this transfer matrix is multiplied on both sides by the

matrix
cos @ jsind
- )
jsinf@ coséd

where the line length § = 27!/, is given by tan=1/b—x
the over-all transfer matrix is given by

<A-l +JjB:

A, —}—‘ng> 5)
A+ jBs ’

As+jBs

where

A1 = a1¢c0820 — (by + b3) sinf cosh — a,sin®

B = bicos? 8+ (a2 + a3) sinfcos6 — by sin2 6, (6)

and

I

14 gr — bux; by = gx + br

14+ gr— b, l‘)‘4=gx+br.

7 This matrix is more commonly referred to as the 4BCD or
chain matrix. For the recent tendency to use the idea of transfer or
transmission in the title see E. F. Bolinder, “Note on the matrix
representation of line or two-port netwarks,” IRE Trans. on Cir-
cuIit THEORY, vol. CT-4, pp. 337-339; December, 1957, and H. L.
Armstrong, “Comments on the matrix representation of two-port
networks,” IRE Trans. on Circuir TrHEORY (Correspondence),
vol, CT-5, p. 147; June, 1958.
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Then putting cos? §=1—[1/b—x]>+ - - -, sin § cos
0=1/b—x+ - - - and sin? 6= [1/b—x]*+ - - -, we ob-
tain,

Ay = 0(1/6%; By = br+ g/b+ 0O(1/b%)

i

Ay =g+ 0(1/b3)  By= b+ 0(1/b)
Ay = g/b*+ 0(1/b6% By = 1/b + O(1/b%)
A, = 0(1/b?) By=br+g/b+0(1/6%). (7)

It will be observed that the series reactance x does
not appear explicitly in expressions for 4 and B. This
follows from the assumption that the waveguide res-
onator is approximately an integral number of half-
guide-wavelengths long. Then, x is small and we may
neglect terms of the order of x/b since b is large. Ac-
tually as we shall see b is of the order of the square root
of the loaded Q of the resonator. The assumption that
the short, added line-lengths are lossless is implied by
(4). It is justified by the fact that it gives the same re-
sult as the detailed calculation outlined in the ap-
pendix.

We have seen that some restriction must be placed on
the size of the loss elements if our model is to be de-
scribed by coupling coefficients, Sufficient conditions,
as we shall see, are that b%h(al), d% and g be of the
order of unity, since it is found that the expansions for
the insertion loss and VSWR proceed in negative
powers of 8% so that if we neglect all terms of the size
of g/b% shal, and r, a rigorous theorvy of the lossy
resonator in terms of coupling coefhicients results. On
the other hand these conditions are necessary for low-
loss, high-Q resonators, since P will be seen to contain
the terms, b%sh(al), b and g.

When we retain only the highest order terms, we
have, for the transfer matrix of the lossy reflecting ele-
ment

Il
[

<j(br + ¢/b) jb ‘)’ )

J/b jbr + g/b)

which reduces, for no loss, to the form of an admittance
inverter.?

It is determined by exact calculation that the transfer
matrix of the lossy transmission line between the two
reflecting elements may be approximated, except for

sign, by
( 1 0
jo + sh(ad) 1)’

where « is the attenuation constant of the transmission
line, [ is an integral number of half-guide-wavelengths
and w is a suitably chosen frequency variable.

Then the transfer matrix of the lossy resonator of
Fig. 2 may be written,

8 S. B. Cohn, “Direct-coupled filters,” Proc. IRE, vol. 45, pp.
187-196; February, 1957.
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<jb1L1 7b4 >< 1 0) <jb2L2 jb ) 9)
J/br gbili) \jw + sh(ad) 1/ \j/bs  jbsLs)

Here, the fact that the series and shunt losses of the
reflecting elements are indistinguishable, has been used
by putting L.=r,+g,/b2. When these matrices are
multiplied together and terms of the order of 1/b* and

less are neglected, the transfer matrix becomes, except
for sign,

(bl/bz biba(Ly 4 Lo + sh(al) -{—jw))' (10)
0 bs/by
At resonance,
4P = {b1/bs + bs/b; + bibs[sh(al) + Ly + Ls]}2  (11)
If we define coupling coefficients 81 and (: by

1/8: = b2[sh(al) + L. + L:], (i=1,2) (12)
we find that

4P, = (]+Bl+ﬁ2)_2' (13)

B1B2

On the other hand, the minimum VSWR, p1, is given by
the input admittance of the cascade, since it is real, by

pr = bi/ba{bi/bs + bibs[sh(ad) + L1+ La)}
= (1 + 82)/8u. (14)

Thus we see that the minimum insertion loss and
input VSWR may be given in terms of coupling co-
efficients. These coupling coefficients, however, differ
from those obtained from the lumped-constant network
of Fig. 1 in that each is a function of the loss contributed
by both coupling elements., Thus, in general, they are
not independent parameters.

UNLOADED
It is clear from (10) that
b12b5%w?

P =P
L{e) L+ 1

(15)

If we define Aw as the value of w at which Pr(w)=2P7,
we find that

Aw = + [1/892 + 1/b2 + Ly + Ly + sh(al)].
Thus
2Aw = 1/Q1 = 2[1/b:2 + 1/by2 + Ly + L; + sh(ad)], (16)

where Qg is the loaded Q of the resonator. It is of the
order of 5% as was observed earlier. If we define Qq as
the limit of Qy, as by and . approach infinity, we have

1/Q0 = 2|L, + L + sh(ad)], (17)

where Z and L, are the respective limits of L; and Lo.
Were L, and L; independent of the 4’s, we would ob-
tain the familiar relationship

January

Qo= (1+ 81+ B)0c. (18)

There is no reason, however, for assuming that L,
and L, are independent of &, and b, If fact, careful
measurements, discussed in a later section, indijcate
that for waveguide resonators L; and L, depend on b,
and bs. (The defining relationship L,=7,-g,/b2 tells
nothing about this question since no assumptions are
made about the dependence of 7, and g, on ;). Thus
it is doubtful if the familiar relationship between Q,
and Qr can be used for a rigorous determination of the
unloaded Q of a resonator.

THE EQUIVALENT CIRCUIT

The transfer matrix

GG 9)G )

has precisely the form of the lossy admittance inverter
(8) except for terms of the order of 1/8%. Thus a lossy
admittance inverter is equivalent to a lossless admit-
tance inverter surrounded on both sides by series loss.
Accordingly an equivalent circuit for the lossy wave-
guide resonator will take the form shown in Fig. 3.

(19)

g
ﬂ*’gllz

R+, sh(zxgu} It %
by 2

Fig. 3—Final lossy resonator schematic.

Here the symbol used by Lawson and Fano? for a
lossless admittance inverter has been modified by
omitting the values for self inductance. The series
losses shown outside of the admittance inverters will
ordinarily be so small as to be neglible. They are in-
cluded, however, for completeness. The phase shift
section has been added to give the proper phase shift
at resonance. This equivalent circuit has an important
advantage over that of Fig. 1, in that it gives an input
impedance of the resonator which is small at the first
shunt reflecting element when measured far from
resonance.

Now the synthesis of high-Q waveguide filters in
terms of admittance inverters and series resonant ele-
ments!® also depends on the assumption that terms of

9A. W. Lawson and R. M. Fano, “The design of microwave
filters,” in “Microwave Transmission Circuits,” M.L.T. Rad. Tab.
Ser., McGraw-Hill Book Co., Inc. New York, N. Y., vol. 9, p. 662—
666; 1948.

10 H, J. Riblet, “A unified discussion of high-Q wave-guide fiter
design theory,” IRE Trans. oN MicrRowAVE THEORY AND TECH-
NIQUES, vol. MTT-6, pp. 359-368; October, 1958.
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the order of 1/ may be neglected in comparison to
terms of the order of unity. This follows from the fact
that for the high-loss, central elements of a filter ¢ is of
the order of +/p which, in turn, is of the order of .10

Thus the consideration of loss does not introduce any
new restriction into the filter synthesis problem. It
follows from (19) that a lossy direct-coupled filter will
have the transfer matrix,

0 jb 1 0 0 7b, 1 0
(ﬁ%l <)><jw+—Rm 1><1w2 <)><jw+~km 1>"'
0 b,
<j/al ())’

where R ;=sh(al)+L,+L; Thus we have justified the
use of predistortion!! when applied to lossy direct-
coupled, waveguide-filter design, to the extent that L,
is constant. In the above representation the series loss
at each end of the filter has been neglected since it is
outside of the resonant part of the structure and so has
negligible effect on the performance of the filter.

AN EXPERIMENT

For a resonator having a length of # half guide-wave-
lengths,

2\/?172 bl//b2 + bz/bl + b1bz<L1 "‘l— Lz + n Sh(al))

If resonators of different lengths are measured for a
range of known values of b, it is possible to measure
L1, Ly and sh(af). The values of sh(al) obtained in this
way agree well with the known attenuation of wave-
guide. Thus the losses associated with the coupling ele-
ments can be determined with the same degree of ac-
curacy. The following conclusions can be reached on
the basis of this type of measurement. First L =~sh(al)/2
so that about half of the resonator loss may be at-
tributed to the coupling elements. L, is sufficiently
constant for general filter design procedures but still
varies sufficiently to result in substantial error in the
determination of Q, if some limiting process is not used.

CONCLUSION

An exact model of a waveguide resonator including
all elements of loss has been analyzed. The analysis is
exact in the limit of High Q and proposes limits on the
size of the loss elements which give the minimum in-
sertion loss and VSWR in terms of the familiar coupling
coefficients. These coupling coefficients, however, are
not associated independently with the coupling ele-
ments. Moreover, the familiar formula relating the
loaded Q of the resonator to its unloaded Q cannot be
justified rigorously.

1 E. G. Fubini and E. A. Guillemin, “Minimum insertion loss
filters,” Proc. IRE, vol. 47, pp. 37-41; January, 1959.
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APPENDIX

In a rigorous determination of P and p, one takes
the transfer matrix for the coupling element in the
general form

<d1 + jb] as ‘Jl‘jbz) (20)

as +jb3 a4 +jb4

and the transfer matrix for the lossy transmission line

in the form
cosh vl sinh v/
(sinh vl cosh 'yl>'
Here v =a+3jB, where 8=2wl/\, and « is the waveguide
attenuation constant. The matrix product,

(21)

(‘11 +jb1 a2+ jbg> (cosh 4l sinh 'yl>
as+ jbs  as+ jbi/ \sinh vl cosh vl
1 b 1 21 'b I
(BT ), e
ast + jbst a4 jbyt

is then evaluated. From it the input admittance ¥ of
the network terminated in unity can be expressed as

4 cos B+ Bsin B + j(C cos 8+ Dsin )
B Ecosf+ FsinB + j(G cos 8+ Hsin )

(23)

Finally, II‘] 2 where I' is the reflection coefficient, takes
the form

iplq__—ﬁcos‘zﬁ—i—2§sin5cos[3+7‘sin26

" Rcos?B + 2SsinBcos B + T sin?g

(24

while the denominator of !1‘]2 equals 4P .(B). To de-
termine the minimum value of I‘| 2 and PL(B), we have
to differentiate the corresponding expressions with
respect to B3, find the corresponding resonant values of
8 and resubstitute. The determination of the minimum
value of Pr(B) proceeds as follows. It cccurs when

tan 28 = 25/(R — T)

and on resubstitution gives a value

R+ T —(R— 1)+ 15
4P; = — 5 .

In the event of a symmetrical resonator, the quantity
under the radical sign is a perfect square and Py, itself,
can be expressed as a perfect square. At this point, Py
is a known integral polynomial in the various parame-
ters of the network. The principal terms occurring in it
are b® sh(al), 8% and g, and one sees that these terms
must be of the order of unity, if the resonant insertion
loss is to be of the order of 10 db or less. [t can also be
shown that the resonant length of the resonator is in-
dependent of the waveguide loss. Moreover for a sym-
metrical resonator,

tan B = 1/b — x
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within terms of the order of 1/5% It can also be readily
shown that, for an unsymmetrical resonator,

tan B -+ tan 8.
1 — tan B; tan 3, ,

tan 28 =

where 8, and B; are the line lengths associated with the
corresponding symmetrical resonators. This, of course,
is essential if the notion of a lossy admittance inverter
is to be of value.

Determining the minimum value of [Pl ? is con-
siderably more involved. That it can be carried through
depends on the fact that the minimum VSWR occurs
at about the same frequency as the minimum value of
P. Thus the minimum value of fP}Z is obtained by
dividing the minimum value of the numerator by the
minimum value of the denominator. A justification of
the procedure requires the values of R, S, T, R, S, and
T. These values are found to be:

R = 521 — b1ay)? + b:2(1 — boxs)?

+ 2(B1 — be2w) (b — batws) + O(1)
S = — by2(bs — byZxs) — bo2(by — by2x1) 4+ O(b)
T = 5.2, + 0(?)
R = b22(1 — buarp)? + b12(1 — bows)?

4+ 2(by — bi2a)) (by — ba2ay) + O(1)
S = — be2(by — bors) — bo2(by — bi2xy) + O(B)
T = b1%s? + O(b%).

l

(25)

Now the extreme values of both the numerator and
denominator of |T'| 2 occur when

tan 8 = 1/b; — 21 + 1/by — 22 + O(1/0)%.

When this value is substituted in (24), it is found
that contributions of the order of 4% cancel out. This
follows from the fact that higher order terms of the
barred and unbarred quantities of (25) are the same.

(26)

January

Consider the rational function of ¢ of the form,

as + ao + 2(b; + Bt + (co + v2)22
as + @ + 2(b; + Bt + (co + o)

(27)

where the subscripts have been used to denote the
order, in b, of the coefficient in question. For example,
bs is of the order of % while 3; is of the order of b. It
will be observed that the highest order part of each
term in the numerator is the same as the highest order
part of the corresponding term in the denominator. No
such assumption is made concerning the remainder
terms. It will be observed that this is precisely the form
of {I‘[Z in (23). Moreover, an examination of (25) will
show that bs;= —xc¢s and as= —xb; with x=1/b;—x
+1/by— 2.

Then if (27) is differentiated with respect to ¢, the
condition for an extreme is

A+ B+ Ciz=0
where
A = ax(B1 — B1) + by(@ — o) + @b — aobs
B = as(ys — 7o) + cs(@o — ao) + aoy: — av¥:
C = bs(y2 — 72 + cu(B — B1) + Bryz — Bi¥e

Putting c¢=c;, B=pB1—B1, a=ar—a and y=v—71,
these become

4 = x%B + xca + O(b)
B = x%y — ca + O(b)
C = —axcy — B+ 00

1

and

—B &+ +/B* — 44C
2C

I =

Now if we factor out the common factor ¢ of the order 8%,
we have

a = a% + 007 £ V[y — a + 00 )] — 4[s38 + 2a + 00 3)|[—vy — 8+ 00671

=

=2(xy + 8) + 00

Thus the significant remaining terms are the order of
unity. Terms of the order of 1/b% in tan B also contribute
terms of order unity; but, as will be seen, these just
cancel out. Thus errors of the order 1/b® in tan 8 make
no contributions to Pz or p. Of course, the error term
in tan B for the two cases will differ. Thus {requencies of
minimum loss and minimum VSWR are not identical.
Their difference however is of the order of 1/5%

The detailed calculation can be carried out in the
following manner.

Since the first term under the radical sign is of the order
of unity, the radical can be expanded by the binomial
theorem and we may write

a — %y + (x¥y + a4 208) + 0(b7?)
—2(xy + 8) + 006
xv+8 is of the order of b so that we can write

a — ¥y + (a%y + a4+ 248)
SRS o S i iy )
—2(xy + 8) [ @]

;=

[ =
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The minus sign corresponds to the minimum of |T'|2
and finally

t=x[1+ {b_g}j,

which is the desired result.

When this value of ¢ is substituted in |T'|2, the for-
mula for p previously presented results. Of course, the
expression for Py is obtained at the same time.

In the process of differentiation, we have assumed
that the length of the resonator, /, is fixed and varied
the frequency through the term in N,. In a sense, then,
we have assumed that the parameters of the coupling
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elements are fixed with frequency. This however is not
an essential assumption. It is well known'? that the
resonant frequency of a lossless waveguide resonator
depends only on the length of the waveguide section
and not on the {requency behavior of the coupling ele-
ments. The effect of introducing loss elements of the
order of unity alters the resonant length by the order
of % Thus as long as the loss elements vary slowly
with frequency, their effect on the resonant frequency
will be negligible.

2 J. Reed, “Low Q microwave filters,” Proc. IRE, vol. 38, pp.
793-796; July, 1950. «

A General Power Loss Method for Attenuation
of Cavities and Waveguides®

J. J. GUSTINCICY

Summary—The usual power loss method of evaluating the damp-
ing constant and Q of cavities and the attenuation constant of wave-
guides, as caused by finite wall conductivity, breaks down in the case
of degenerate modes and fails to predict the coupling between de-
generate modes. By means of variational formulations for the lossy
case it is shown how the usual power loss method may be generalized
to treat the case when there are degenerate modes present. The gen-
eralized method turns out to be a particularly simple extension of the
usual procedure.

HE POWER LOSS technique has always afforded
Ta simple and direct means of calculating the

damping and attenuation constants associated
with cavities and waveguides having finite wall con-
ductivity. It should be noted, however, that an or-
dinary power loss analysis is not directly applicable to
situations in which a degeneracy between modes is
present. As Papadopoulos! has shown, degenerate
modes are unavoidably coupled together by the sur-
face impedance and thus a single mode approximation
no longer gives a sufficient representation of the true
fields in the lossy structure. A linear combination of the
degenerate modes is then required in the approximation
and since the coupling between these modes is not
known @ priori, the power loss technique cannot be
applied. Various perturbation solutions have appeared

* Received May 14, 1962; revised manuscript received October
19, 1962.

t Case Institute of Technology, Cleveland, Ohio.

1V. M. Papdopoulos, “Propagation of electromagnetic waves in
cylindrical waveguides with imperfectly conducting walls,” Quart.
J. Mech. and Appl. Math., vol. 7, pp. 325-331; September, 1954,

in the literature’® but these solutions fail to give a
physical interpretation of the mode coupling and the
degree of approximation involved.

Degeneracies are a common occurrence in a large
class of geometries and therefore some simplified proce-
dure is highly desirable. It is the purpose of this paper
to generalize the usual power loss method so that it is
applicable to the degenerate mode case. This generaliza-
tion is obtained by using the Ritz technique in connec-
tion with variational principles for both the cavity and
waveguide. The variational approach gives rise to a
matrix eigenvalue problem from which all the essential
information can easily be obtained. The matrix eigen-
value problems are of the greatest interest and will be
presented first while the variational analyses which lead
to these conclusions follow to complete the presentation.
The following considerations will be limnited to the most
common situation in which the surface impedance is of
the form

Mo

bl

€0

although the analysis can readily be extended, treating
a more general form of impedance.

2 A, E. Karbowiak, “Theory of imperfect waveguides, the effect
of wall impedance,” Proc. IEE (London), vol. 102, pt. B, pp. 698-
707; 1955.

¢ P. N. Butcher, “A new treatment of lossy periodic waveguides,”
Proc. IEE (London), vol. 103, pt. B, pp. 301-306; 1956.



