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The Coupling Coefficients of an Unsymmetrical

High~Q Lossy Waveguide Resonator*

HENRY J. RIBLET~, MEMBER, IRE

Sumrnarg-This paper determines the minimum insertion loss

and the minimmn VSWR of a waveguide resonator constructed by

spacing two, unequal, reactive, primarily-shunt, Iossy, reflecting ele-

ments approximately one-half-wavelength apart on a 10SSYtrans-
mission line. The requirement that the resonant 10SS be small, 10

db or less, limits the size of the loss parameters and permits an ap-

proximate solution of the problem within an error of the order of
1/QL. These formulas can be expressed in terms of two “coupling

coefficients. ” Contrary to the familiar formulas derived from the low
frequency analogue, however, these coupling coefficients depend, in
general, on the parameters of both reflecting elements. Formulas for
the loaded and unloaded Q of the resonator are derived. In general,
it is not possible to determine the unloaded Q of the resonator from

its loaded Q except by a limiting process. Within the order of the ap-
proximation involved, series losses cannot be distinguished from

shunt losses. Accordingly they can be lmnped together and one is led

to the fact that a Iossy admittance inverter consists of a lossless ad-
mittance inverter surrounded on both sides by series losses. Thk is

used to justify the application of the idea of “predistortion” to the
design of narrow-band, Iossy, waveguide filters.

INTRODUCTION

T
HE RESPONSE characteristics of a Iossless res-

onator with external coupling have been dis-

cussed in terms of Maxwell’s equations and the

eigenvalue solutions of the pertinent boundary value

problem.1 When loss is introduced into the problem,

however, a rigorous solution is no longer available.z

In the customary approximation,3 the resonator is

treated in terms of its behavior at a single natural fre-

quency where its response is that of a tuned LC circuit.

To provide coupling into the resonator, the LC circuit

is terminated in ideal transformers. All the loss of the

resonator is associated with the tuned LC circuit while

the ideal transformers, which correspond to the cou-

pling elements of the resonator, are taken to be lossless.

The final low-frequency model is pictured in Fig. 1.

For the resulting lumped-constant network, the in-

sertion loss at resonance, PL, is given by

4P. = (1 + /31 + 1%)2/h&?, (1)

while the VSWR pl, measured at terminal 1, at res-

onance is given by

m = (1 + ,B2)/B1. (2)

* Received July 20, 1962; revised manuscript received, October
12, 1962. Presented before the PGMTT Symposium, May, 1960.
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Here it should be noted that resonance occurs at the

single frequent}- which minimizes both PL and p]. The

~’s are the well known coupling coefficients’ and are

given terms of the turns ratios of the ideal transformers,

RG and the loss of the LC circuit. For the network of

Fig. 1, they are independent of each other.

The effect of coupling losses on the response of the

low frequency analogue have been considered by Malter

and Brewer4 and by Ginzton, s Younge has considered the

resonator problem in which the LC network is replaced

by a Iossy section of transmission line essentially as

shown in Fig. 2 except that his formulas assume no

losses in the coupling elements. He has shown that for

a lossy, transmission-line resonator, the frequencies of

minimum loss and minimum VSWR do not coincide.

In this paper, the resonator to be studied is that of

Fig. 2, consisting of two lossy elements, most of whose

reflection is due to the shunt discontinuity, spaced ap-

proximately an integral number of half-wavelengths

apart on a uniform but Iossy transmission line. The

minimum insertion 10SS and VSWR of this resonator

will be determined in terms of coupling coefficients, sub-

ject to certain limitations on the size of the loss

parameters.

That some restriction is necessary, we can see as

follows: Clearly a symmetric resonator (~,= f?,) whose

minimum PL and p are given by (1) and (2) is quasi-

RG L CR

Fig. l—Lunlped constant resonator.

Fig. 2—Lossy transmission line resonator model.

4 L. Malter and. G. R. Brewer, “Microwa\-e Q measurements in
the presence of series losses, ” ~. A@@l. P,hys., vol. 20, pp. 918-925;
October, 1949.

5 E. L. Ginzton, “Microwave Q measurements in the presence of
coupling losses, ” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-6, pp. 383–389; Octobe:, 1958.

8 L. Young, “AnaIysis of a transmission cavity wavemeters, ”
IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-
8, pp. 436-+39; Ju[Y, 1960.



1963 Riblef: Coupling CoefTlcients of Unsymmetrical Waveguide Resonafor 79

reactive in the sense that the insertion loss of the res-

onator can be determined from its VSWR by eliminat-

ingpl=~j between (1) and (2). Now this same relation

is true for the lumped-constant model regardless of

loss; but, if the transmission line between two identical

reflecting elements, as in Fig. 2, is sufficiently long or

10SSY, there will be no direct relationship between the

input standing wave ratio and the insertion loss. Thus

we know that for the general netwcrk of Fig. 2 no exact

formulas for input VSWR and insertion loss in terms

of coupling coefficients is possibIe.

THE COUPLING COEFJiYCIENTS

The final formulas for the coupling coefficients PI, 62

involve bl, bz, rl, rz, gl, g~, and sh(cd) but do not contain

xl and X2 since their only effect is to slightly modify the

line length at resonance. Here all symbols are defined

in Fig. 2 and sh(al) is sinh (cd). These formulas were

obtained by the involved computations outlined in the

Appendix. However they can be obtained directly,

though heuristically, in the following manner.

We consider short lengths of transmission line placed

on either side of the general reflecting element whose

transfer7 matrix is given by the product

If this transfer matrix is multiplied on both sides by the

matrix

(

cos 0 j sin O

)
(4)

j sin O Cos 0

where the line length 0 = 27rl/& is given by tan 0 = I/b —x

the over-all transfer matrix is given by

(

.4, +jBl .42 +,jB,

)
(5)

At+jB3 A4+j134 ‘

where

Al = a,cos20– (bz+b3)sin0cos0 – adsin20

B = bi COS2O + (az + aJ sin O cos 19– bl sin2 0, (6)

and

(z I=l+gv-b. t; bl=gx+br

al=l+gr —b, b4 = gx + by.

7 This matrix is more commonly re [erred to as the A B CD or
chain matrix. For the recent tendency to use the idea of transfer or
transmission in the title see E. F. Bolinder, ‘[Note on the matrix
representation of line or two-port networks, ” IRE TRANS. ON CIR-
CUIT THEORY, vol. CT-4, pp. 337–339,; December, 1957, and H. L.
Armstrong, ‘(Comments on the matrix representation of two-port
networks, ” IRE TRANS. ON CIRCUIT THEORY (Correspondence),
vol. CT-5, p. 147; June, 1958.

Then putting Cosz 6= 1 – [1/b —z]2+ . . . , sin 6 cos

O= I/b–x+ ~ . . and sinz 6= [l/b–x]z+- - . -, we ob-

tain,

A, = 0(1/6’); B, = br + g/b + 0(1/b3)

A, = g + 0(1/b2) B, = b + 0(1/b)

A3 = g/b2 + 0(1/b4) B:, = I/b + 0(1/b3)

A4 = 0(1/b2) B, = br + g/b + 0(1/b3). (7)

It will be observed that the series reactance z does

not appear explicitly in expressions for ..4 and B. This

follows from the assumption that the waveguide res-

onator is approximately an integral number of half-

guide-wavelengths long. Then, x is small and we may

neglect terms of the order of x/b since b is large, Ac-

tually as we shall see b is of the order of the square root

of the loaded Q of the resonator. The assumption that

the short, added line-lengths are lossless is implied by

(4), It is justified by the fact that it gives the san~e re-

sult as the detailed calculation outlined in the ap-

pendix.

We have seen that some restriction must be placed on

the size of the loss elements if our model is to be de-

scribed by coupling coefficients. Sufficient conditions,

as we shall see, are that b2sh(al), b2r and g be of the

order of unity, since it is found that the expansions for

the insertion loss and VSWR proceed in negative

powers of bz, so that if we neglect all terms of the size

of g/b2, shed, and r, a rigorous theory of the lossy

resonator in terms of coupling coefficients results. On

the other hand these conditions are necessary for low-

10SS, high-Q resonators, since PL will be seen to contain

the terms, b%h (al), b2r and g.

When we retain only the highest order terms, we

have, for the transfer matrix of the lossy reflecting ele-

ment

(

j(br + g/b) jb ‘

)
(8)

j/b j(bv + g/b) ‘

which reduces, for no loss, to the form of an admittance

inverter. 8

It is determined by exact calculation that the transfer

matrix of the lossy transmission line between the two

reflecting elements may be approxim,~ted, except for

sign, by

(

1 0

)jw + sh(al) 1 ‘

where a is the attenuation constant of the transmission

line, Z is an integral number of half-guide-wavelengths

and o is a suitably chosen frequency variable.

Then the transfer matrix of the lossy resonator of

Fig. 2 may be written,

8 S. B. Cohn, ‘(Direct-coupled Iilters,” PROC. I RE, vol. 45, pp.
187–196; February, 1957.
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Here, the fact that the series and shunt losses of the

reflecting elements are indistinguishable, has been used

by putting L.= r%+gi/b%2. When these matrices are

multiplied together and terms of the order of l/b2 and

less are neglected, the transfer matrix becomes, except

for sign,

(bJb2 b,bJL, + L, + Sh(d) + j@)

o b2/bl )
(10)

At resonance,

4PL = {bI/b2 + bJbl + blbz[sh(cd) + LI + L~] } 2. (11)

If we define coupling coefficients ~1 and ~Z by

l/(?~ = b,2[sh(d) + L, + LZ], (i = 1, 2) (12)

we find that

(~ + PI + ,B2)2
4PL =

/31/32 — “

(13)

On the other hand, the minimum VSWR, pl, is given by

the input admittance of the cascade, since it is real, by

PI = bJbz{bJbz + b,b,[sh(d) + L, + L,)]

= (1 + B,)/B,. (14)

Thus we see that the minimum insertion loss and

input VSWR may be given in terms of coupling co-

efficients. These coupling coefficients, however, differ

from those obtained from the lumped-constant network

of Fig. 1 in that each is a function of the loss contributed

by both coupling elements. Thus, in general, they are

not independent parameters.

UNLOADED Q

It is clear from (10) that

b12b,2u2
PL(.) = PL + — .

4
(15)

If we define Au as the value of u at which P.(o) = 2P.,

we find that

Am = ~ [l/b,’ + I/blz + LI + L2 + sh(al)].

Thus

2Aoj = l/Q~ = 2[1/b,2 + l/bI’ + L, + L,+ sh(aO], (16)

where QL is the loaded Q of the resonator. It is of the

order of bz as was observed earlier. If we define QO as

the limit of Q. as bl and b? approach infinity, we have

I/Q. = 2[~1 + ~, + sh(al)], (17)

where El and Zz are the respective limits of LI and Lz.

Were LI and Lz independent of the b’s, we would ob-

tain the familiar relationship

~o= (1 + 81 + /?,)QL. (18)

There is no reason, however, for assuming that Ll

and Lz are independent of bl and bz. If fact, careful

measurements, discussed in a later section, indicate

that for waveguide resonators LI and L2 depend on bl

and b2. (The defining relationship L, = r,+g,/b,2 tek

nothing about this question since no assumptions are

made about the dependence of r, and g, on hi). Thus

it is doubtful if the familiar relationship between QO

and QL can be used for a rigorous determination of the

unloaded Q of a resonator.

THE E~UIV.ALENT CIRCUIT

The transfer matrix

(19)

has precisely the form of the Iossy admittance inverter

(8) except for terms of the order of I/b’. Thus a Iossy

admittance inverter is equivalent to a Iossless admit-

tance inverter surrounded on both sides by series loss.

Accordingly an equivalent circuit for the lossy wave-

guide resonator will take the form shown in Fig. 3.

Fig. 3—Final Iossy resonator schematic.

Here the symbol used by Lawson and Fanog for a

lossless admittance inverter has been modified by

omitting the values for self inductance. The series

losses shown outside of the admittance inverters will

ordinarily be so small as to be neglible. They are in-

cluded, however, for completeness. The phase shift

section has been added to give the proper phase shift

at resonance. This equivalent circuit has an important

advantage over that of Fig. 1, in that it gives an input

impedance of the resonator which is small at the first

shunt reflecting element when measured far from

resonance.

Now the synthesis of high-Q waveguide filters in

terms of admittance inverters and series resonant ele-

mentslo also depends on the assumption that terms of

s A. W. Lawson and R. M. Fano, ‘(The design of microwave
filters, ” in “Microwave Transmission Circuits, ” M. I.T. Rad. Tab.
Ser.. McGraw--Hill Book Co., Inc. New York, N. Y., vol. 9. p. 662-
666 ; 1948.

. .

10 H. J. Riblet, “A unified discussion of high-~ wave-guide filter
desirer theorv. ” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQUES, vol.’ hITT-6, pp. 359–36S; October, 1958.
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the order of I/bz may be neglected in comparison to

terms of the order of unity. This follows from the fact

that for the high-loss, central elements of a filter t is of

the order of <p which, in turn, is of the order of b.1°

Thus the consideration of loss does not introduce any

new restriction into the filter synthesis problem. It

follows from (19) that a 10SSY direct-coupled filter will

have the transfer matrix,

(j;b j:)

where Rtj = sh(al) +L, +L~. Thus we have justified the

use of predistortion H when applied to 10SSY direct-

coupled, waveguide-filter design, to the extent that L,

k constant. In the above representation the series loss

at each end of the filter has been neglected since it is

outside of the resonant part of the structure and so has

negligible effect on the performance of the filter.

AN EXPERIMENT

For a resonator having a length of

lengths,

n half guide-wave-

If resonators of different lengths are measured for a

range of known values of b, it is possible to measure

Ll, L2 and sh(cd). The values of ~jh(cd) obtained in this

way agree well with the known attenuation of wave-

guide. Thus the losses associated with the coupling ele-

ments can be determined with the same degree of ac-

curacy. The following conclusions can be reached on

the basis of this type of measurenlent. First L = sh(cd)/2

so that about half of the resonator loss may be at-

tributed to the coupling elements. L, is sufficiently

constant for general filter design procedures but still

varies sufficiently to result in substantial error in the

determination of QO if some limiting process is not used.

CONCLW1O’N

An exact model of a waveguide resonator including

all elements of loss has been analyzed. The analysis is

exact in the limit of High Q and proposes limits on the

size of the loss elements which give the minimum in-

sertion loss and VSWR in terms of the familiar coupling

coefficients. These coupling coefficients, however, are

not associated independently with the coupling ele-

ments. llloreover, the familiar formula relating the

loaded Q of the resonator to its unloaded Q cannot be

justified rigorously.

11E, G, Fubini and E, A. Guillemiu, “Minimum insertion 10sS

filters, ” PROC. IRE, vol. 47, pp. 37–-!1; Jalluary, 1959.

APPENDIX

In a rigorous determination of PL, and p, one takes

the transfer matrix for the coupling element in the

general form

(al + jbl a2 +jb2

)as +jb~ ad +jbd
(20)

and the transfer matrix for the 10ss>7 transmission line

in the form

(cosh yl sinh 71

)sinh yl cosh yl
(21)

Here y =a+j(?, where (3= 2rl/& and a i!; the waveguide

attenuation constant. The matrix product,

(

al +jbl az + jbz

)(

cosh yl sinh yl

at + jb3 al + jbd )sinh -yl cosh -yl

is then evaluated. From it the input admittance 1’ of

the network terminated in unit}7 can be expressed as

~= Acos@+B sin fl+j(Ccos fl+D sin@)
. (2.3)

Ecosil+ Fsinfi+ j(Gcosfl+H sin@ ‘--’

Finally, I r ]‘, where r is the reflection coefficient, takes

the form

while the denominator of I r ] ~ equals 4PL(~). To de-

termine the minimum value of II’12 and PL(~), we have

to differentiate the corresponding expressions with

respect to ~, find the corresponding resonant vallues of

/3 and resubstitute. The determination of the minimum

value of PL(6) proceeds as follows. It occurs when

tan 2fi = 2S/(R – T)

and on resubstitution gives a value

R+ T–~(R– T)2+.LS2
4PL = —— -y—— .

In the event of a symmetrical resonator, the quantity

under the radical sign is a perfect square and PI,, itself,

can be expressed as a perfect square. .At this point, PL

is a known integral polynomial in the various parame-

ters of the network. The principal terms occurring in it

are b2 sh (al), b2r and g, and one sees that these terms

must be of the order of unity, if the resonant insertion

loss is to be of the order of 10 db or less. It can also be

shown that the resonant length of th: resonator is in-

dependent of the waveguide loss. Moreover for a sym-

metrical resonator,

tan,f?= l/b-x
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within terms of the order of l/b3. It can also be readily

shown that, for an unsymmetrical resonator,

tan ,61 + tan ,82
tan 2@ =

1 – tan ,61 tan /3z ‘

where ~1 and (3Z are the line lengths associated with the

corresponding symmetrical resonators. This, of course,

is essential if the notion of a lossy admittance inverter

is to be of value.

Determining the minimum value of I r 12 is con-

siderably more involved. That it can be carried through

depends on the fact that the minimulm VSWR occurs

at about the same frequency as the minimum value of

PL. Thus the minimum value of 11?12 is obtained by

dividing the minimum value of the numerator by the

minimum value of the denominator. A justification of

the procedure requires the values of R, S, T, R, S, and
——

~. These values &-e found to be:

R=

s=

T=

z=

3=

7=

Now the

h’(1 – 13134)2+ 131yl – bm)~

+ 2(6, – b,’”h) (b, – h%,) + o(1)

– b,2(b, – b,’x,) – b,’(b, – b,%) + O(b)

b,2b,’ + 0(b2)

b,’(1 – b,x, )’ + b,’(1 – bzad2

+ ~(bl – b,%, )(b, – b,’x,) + O(1)

– b,’(b, – b,%,) – b,’(b, – b,’xJ + O(b)

b,2bJ + 0(b2). (25)

extreme values of both the numerator and

denominator of ]I’12 occur when

tan~ = I/bl – .vI + l/bz – ~Z + 0(1/’b)3. (26)

MJhen this value is substituted in (24), it is found

that contributions of the order of bz cancel out. This

follows from the fact that higher order terms of the

barred and unbarred quantities of (25) are the same.

Consider the rational function of t of the form,

az + aO + 2(b: + /71)t + (C4 + Yz)tz
(27)

az + tio + 2(b3 + BI)t + (c4 + -7Jtz

where the subscripts ha’ve been used to denote the

order, in b, of the coefficient in question. For example,

b, is of the order of b’, while (?, is of the order of b. It

will be observed that the highest order part of each

term in the numerator is the same as the highest order

part of the corresponding term in the denominator. No

such assumption is made concerning the remainder

terms. It will be observed that this is precisely the form

of 11712 in (23). lVIoreover, an examination of (25) will

show that bs= —XC1 and a~= —xb? with x= I/bI—xl

+1/bz–xz.

Then if (27) is differentiated

condition for an extreme is

.-l + Bt + Ct2

where

with respect to t,the

. 0,

~ = @(,& – /?I) + bt(ao – aO) + ~OPl – aO~l

B = (ZZ(YZ – ~J + cJ(tio – ao) + tio~j – ao7z

C = bd(y~ – ~z) + G4(/71 – ~1) + BI’YZ – /3172

Putting c=G1, B=dl–pl, a=ao—ao and ~=~1 –vi,

these become

~ = X2G~ + XCO! + O(b)

B = X2G~ – CO!+ O(b)

C = – xcy – C,6+ O(b3)

and

–B i ~B2 – 4AC
t= —.

2C

Now if we factor out the common factor c of the order b~,

we have

a – ~zy + 0(b–2) ~ ti[x~~ – a + O(b–2)]2 – 4[a2~ + xa + O(b–~)][–.vy – L? + O(b–l)]
t=_—

–2(A7 + B) + O(b-l)

Thus the significant remaining terms are the order of

unity. Terms of the order of l/b3 in tan ~ also contribute

terms of order unity; but, as will be seen, these just

cancel out. Thus errors of the order l/b3 in tan ~ make

no contributions to PL or p. Of course, the error term

in tan ~ for the two cases will differ. Thus frequencies of

minimum loss and minimum VSWR are not identical.

Their difference however is of the order of I/b’.

The detailed calculation can be carried out in the

following manner.

Since the first term under the radical sign is of the order

of unity, the radical can be expanded by the binomial

theorem and we may write

a — .v’~ + (Xz’y + a + 2Tp) + O(b–’)
f=—

–2(xT + ~) + O(b-l) “

x~+/3 is of the order of b so that we can write
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The minus sign corresponds to the minimum of

and finally

t = “V[l + {b-’/j,

which is the desired result.

loss Method for At fenuafion 83

When this value of t is substituted in I T 12, the for-

mula for p previously presented results. Of course, the

expression for PL is obtained at the same time.

In the process of differentiation, we have assumed

that the length of the resonator, 1, is fixed and varied

the frequency through the term in hO. In a sense, then,

we have assumed that the parameters of the coupling

elements are fixed with frequency. This however i~j not

an essential assumption. It is well known” that the

resonant frequency of a lossless waveguide resonator

depends only on the length of the waveguide section

and not on the frequency behavior of the coupling ele-

ments. The effect of introducing loss elements of the

order of unity alters the resonant length by the order

of b–3. Thus as long as the loss elements vary slowly

with frequency, their effect on the resonant frequency

will be negligible.

‘z J. Reed, “LOW Q microwave filters,” PROC. IRE, vol. 38, pp.
793-796 ; July, 1950. w

A General Power Loss Method for Attenuation

of Cavities and Waveguides*

J. J. GUSTINCIC~

Summary—The usual power loss method of evaluating the damp-
ing constant and Q of cavities and the attenuation constant of wave-

guides, as caused by finite wall conductivity, breaks down in the case
of degenerate modes and fails to predict the coupling between de-

generate modes. By means of variational formulations for the lossy
case it is shown how the usual power loss method maybe generalized
to treat the case when there are degenerate modes present. The gen-

eralized method turns out to be a particularly simple extension of the
usuaf procedure.

T HE POWER LOSS technique has always afforded

a simple and direct means of calculating the

damping and attenuation constants associated

with cavities and waveguides having finite wall con-

ductivity. It should be noted, however, that an or-

dinary power loss analysis is not directly applicable to

situations in which a degeneracy between modes is

present. As Papadopoulosi has shown, degenerate

modes are unavoidably coupled together by the sur-

face impedance and thus a single mode approximation

no longer gives a sufficient representation of the true

fields in the lossy structure. A linear combination of the

degenerate modes is then required in the approximation

and since the coupling between these modes is not

in the literaturel–3 but these solutions fail to give a

physical interpretation of the mode cc,upling and the

degree of approximation involved.

Degeneracies are a common occurrence in a large

class of geometries and therefore some simplified proce-

dure is highly desirable. It is the purpose of this paper

to generalize the usual power loss method so that it is

applicable to the degenerate mode case. This generaliza-

tion is obtained by using the Ritz technique in connec-

tion with variational principles for both the cavity and

waveguide. The variational approach gives rise to a

matrix eigenvalue problem from which all the essential

information can easily be obtained, The matrix eigen-

value problems are of the greatest interest and will be

presented first while the variational analyses which lead

to these conclusions follow to complete the presentation.

The following considerations will be limited to the most

common situation in which the surface impedance is of

the form
.

d/Jo
Z.= R.(l+j), Rm<<ZO= —,

~o

known a Priori, the power loss technique cannot be

applied. Various perturbation solutions have appeared
although the anal ysis can readily be extended, treating

a more general form of impedance.

* Received May 14, 1962; revised manuscript received October
19, 1962.
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